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Abstract— An integral equation for the problem of smooth contact between a rigid indenter and
an orthotropic beam is formulated using an approximate Green's function for surface displacements
in the beam, which is obtained as the sum of half-plane solutions for surface displacements, and
beam theory deflections. The left and right Green's functions for beam slope are approximated as
a single function with continuous derivatives using a least squares error procedure. A closed form
solution is obtained for the integral equation. Solutions are obtained for two cases: symmetric
indentation of simply supported orthotropic beams and indentation of cantilever beams. Closed
form expressions are derived for contact stresses and the contact force-contact length relation in
terms of a nondimensional beam parameter 8 and a nondimensional contact parameter §.

NOTATION
. . 14 t)z Ij
8 nondimensional beam parameter = BN
b beam width
2 contact length
¢ e/l
DD, stilfness coctlicients (functions of clastic constants)
ELE, Young's modulus in | and 2 directions
g{x, &) Green's function
a4 Gireen's function for beam slope
o Green's function for half-plane boundary slope
,, shear modalus
h beam thickness
! beam length
r contact force
P nondimensional contact force = (4PT)/(nD,b1%)
P contact stresses
F nondimensional contact stress = {pRY/(D,)
P nondimensional contact stress = (nbep)/(2P)
e coetficients in the Chebyshev polynomial for §
R indenter radius of curvature
T, Chebyshev polynomials of first kind
v, Chebyshev polynomials of second kind
X, ¥ coordinate axes
X {x—x)/c
X x-coordinate of indenter center
X, x-coordinate of contact center
X x
£ x
f nondimensional contact parameter = 8,75 B!
A indenter p-displacement
o boundary slope of half-planc at x = 0
[ Poisson’s ratio
¢ dummy variable
E (f X fC

I. INTRODUCTION

The problem of smooth indentation of beams of finite length by a rigid cylindrical indenter

has been studied by several authors. Keer and Ballarini (1983), Keer and Miller (1983) and

Keer and Schonberg (1986) approached the problem via a local-global technique. Their

methods of analysis superpose an infinite-layer solution, derived through the use of integral

transforms, on a pure-bending beam-theory solution. An integral equation is obtained for
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the contact problem, which is solved numerically. Sankar and Sun (1983) obtained a
solution for displacements in a beam by superposing beam theory deflections and dis-
placements obtained by solving the plane elasticity equations using finite Fourier trans-
forms. A point matching technique was used to modify the integral equation as a system
of linear algebraic equations. Later, Sun and Sankar (1985) extended the method for the
problem of indentation of initially stressed orthotropic beams.

Sankar (1987a) derived an approximate Green's function for surface displacements in
a beam by superposing the elasticity solution for half-plane and beam theory deflections.
The Green's function approach simplified the formulation of the contact problem by
eliminating the need for solving the elasticity equations, because half-plane displacements
can be obtained in a closed form. The contact problem was solved by a least squares
collocation procedure. Application of this method for orthotropic beams can be found in
Sankar (1987b).

In all studies referred to above, solution of the integral equation for the contact problem
was obtained numerically, and hence the effect of beam dimensions, indenter radius of
curvature and degree of orthotropy on the contact behavior could be understood only by
means of numerical examples. In this paper. an approximate solution for the problem of
smooth contuact between a rigid indenter and an orthotropic beam is obtained by following
the Green's function approach. The left and right Green's functions for beam slope are
approximated by a single function which has a continuous second derivative, unlike the
actual Green's function. The integral equation for the contact problem is then solved
exactly. Closed-form solutions are obtained for contact stresses and contact force-contact
length refation. As a result of this method, suitable nondimensional parameters are ident-
ificd, and the contact behavior of an orthotropic beam s deseribed with few parameters.

Although the present method can be applicd to any type of beam support, two examples
are chosen for iflustration. In the first example, symmetric indentation of a simply supported
orthotropic beam is considered. In this case the center of contact length always coincides
with the beam center, and the contact stresses are symmetric about the center. In the second
example, a cantilever beam is indented by a smooth indenter, in which case the center of
contact region relative to the indenter depends on the contact force. Thus an additional
unknown s introduced.

ft may be noted that the approximate Green's function is valid only if the toad is not
very close to either end of the beam (Sunkar, 1987a4). In the present study we will assume
that the contact region is not within 0.25/ of the beam ends.

2 SYMMETRIC INDENTATION OF A SIMPLY SUPPORTED BEAM

The problem is depicted in Fig. 1. The erthotropic beam is of rectangular cross section
b x it and length £ The principal material directions 1 and 2 are parallel to the v and y axes
respectively.

Fig. 1. Symmetric indentation of an orthotropic beam.
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The integral equation for the symmetric contact problem is

=< x*
bft p(Dg(x, ) dé=A~5k~, (h

where p(x) = —0,,(x.0) is the unknown contact stress beneath the indenter, 2c is the
contact length. g(x. &) is the Green's function for surface displacements in a beam, R is the
indenter radius of curvature and A is the y-displacement of the indenter. It should be noted
that eqn (1) assumes that the indenter has a parabolic profile. If the indenter is circular,
eqn (1) is valid only for ¢/R « 1. The unknown displacement A can be eliminated by
differentiating eqn (1) with respect to x. Thus the integral equation takes the form

-

b J PO (x.8) dE = —x/R, @

where a prime denotes differentiation with respect to x. It was shown in Sankar (1987b)
that an approximate g{x. &) can be obtained by adding g, (x. &). the Green's function for
surface displacements in an orthotropic half-plane, and g, (x. $). the Green's function for
beam detlections. Thus eqn (2) can be written as

b
hf PO ) +gn(x, 8] dE = ~ /R, 3

where gy, is given by (Sankar, 1987b):

p)

RhDs(E~x)° @

gulx.§) =

For the case of plane stress purallel to the x-y plane, D, = 2E,/{41,+ 4,}, where 4, and 4,
are the roots of the characteristic equation 81,4 = (2814 See) A+ 522 =0, 8y, = VE,,
Su=Ey See = /G5, S1y= —vo/E, Eyand E, are the Young’s moduli in the 1 and 2
directions, G, is the shear modulus in the 1-2 plane and v,, is the Poisson’s ratio. For the
case of plane strain, D, will be slightly different (Lekhnitskii, 1981).

The beam Green's function for the slope is

gu(x, &) = (/D) 2SN + 6N e/l = 3(x/ ) + (/D) +3¢(x, O], )

where D = £, for plane stress and D, = E,/(1 —vi,) for plane strain. The function ¢(x, &)
is defined as

Xl 2 i
$(x,{) = ~ (»73). x <,
and

_z\
Hx )=+ (ii.c) . x>¢. )

It may be noted that ¢ is an odd function of the argument (x-¢), and can be expanded in
terms of odd powers of (x—¢§). We shall approximate ¢ by a single function of the type
ci(x—E +c{x—E&)*. The constants ¢, and c, depend upon the degree of accuracy and the
range of (x — &) over which the approximation is sought. In the present study, the maximum
contact length is assumed to be given by 2¢ = 0.5/, We will therefore approximate ¢(x, &)
such that the error is a minimum over the range —0.5 < (x—¢)/l < +0.5. Using the least
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squares error approximation procedure. the constants ¢, and c. are found to be 5/32 and
35/24 respectively. Thus ¢{x. &) can be written as

o S f{x=Z\ 35({x-¢Y
d(x.3) = ’3‘5 (T)+ 34 (WT—) . (7

From egns (5) and (7), we obtain
go(x. &) = (1*/32D ph) f(£.9), (8)

where

e

S0 = (= 8IRE+1408°¢Y) + 42057 E + (17¢ - 228801 E - 766 E, 9

£ = x/c. &= &/e,and ¢ = ¢/l. The expressions for gy, given by eqns (5) and (8) are compared
in Fig. 2 for two extreme cases, &// = 0 and 0.25. The agreement is quite good.
The function f(£, &) can be rewritten as

=

S(%, 8 = (—8LE¢+ 1405 ¢ + 21057 T,y ()
+(17¢ =228 8 = 5TE) TS+ 2108 TAE - 197 T (. (1

where 7, are Chebyshev polynomials of the first kind, given by Tols) =1, T(s) = s,
To(s) = 257 =1, Ty(s) = 4s’ =35 and T,(s) = 85* =87+ L.

We will introduce a4 nondimensional parameter B = (r/32)(Do/D)({/h)} and a non-
dimensional contact pressure g = (pR)Y/(D.1). From eqns (4), (8) and (10). the integral
equation (3) takes the form

i B e a4 = ek ¥
NET S ) dS = ek (th

The contact pressure p(X) can be assumed to be of the form

AR =(1-) "7 Y g, T.(%). (12)

LR

In order to evaluate the first term of the integral in egn (11) we will use the result (Gladwell,
1980)

08— — T 71 T T T
‘— Equation (8)
.0 0.4 o Equation (S)
u ot
“ -
3 0.2 =
a | N
¥ o [ i/t =0.25
o
& | ]
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m-0.41
. -
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x/t

Fig. 2. Exact and approximate slopes of simply supported beams.
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1[*'(1 )" 2T, (1)
nd

) dt=U,_(s5), n=0,1,2,...,and |s| < I,

where {P} denotes the Cauchy principal value and U,(s) are the Chebyshev polynomials
of the second kind defined by U_,(s) =0, Us(s) =1, U(s) =25, Uy(s) =4s'—1,
U,(s) = 85 —4s and U,(s) = 165°—125°+ 1. The second term of the integral in eqn (11)
can be easily evaluated using the orthogonality condition

- 0, n#m
J (=)L T,(0dt =<{r/2, n=m#0

7, n=m=0.
Thus eqn {11) takes the form

-q|+4qa\t+q‘(8t‘ ‘“‘,)+q4(l6€‘-8t)+8 qo( 81[1f+l4054 3+2[0 ")
(858 — 114F 53 = 28.50") + ¢ (1058 ) + 45(=9.5¢%)} = —¢&.  (13)

By equating the coefficients of X%, ..., ' on both sides of eqn (13), we obtain four equations
(14)~(17) in the unknowns ¢, ..., 4

{2+ B(8.5¢* ~28.5¢")}q) +(—9.58¢" = 2)qy = 0 (14)

B(10¢* =818 gy + (4 + 105B¢*) g, —8g, = —¢ (15)

(—114B¢% g, +8¢, =0 (16)

104B¢*q, + 16¢, = 0. {an

The fifth equation (18) is obtained from the fact that the contact stresses vanish at the ends
of contact zong, i.e.

got¢q+q:+q:+q. =0. (18)

The solution of eqns (14)-(18) is as follows:

qo = &/(4+ 818> —210B¢* - 918.758%¢"), (19)
hi=a5=0, 20
= (f—1)q0, @n
and
4y = "ﬁ‘fu. (22)

where f is a nondimensional parameter defined as § = 8.758¢*

Contact stresses
The contact force is given by

P=bh f p(x) dx,

and. using eqn (12), we obtain
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Fig. 3. Contact stresses in simply supported beams.

P = {nhD,lc/R ). 23)

We shall plot the contact stresses using another nondimensional contact stress parameter,
p = (nhe/2P) p(x). Using eqns (12) and (23) and substituting for ¢, and ¢, in terms of ¢,
from eqns (21) and (22), we obtain

p= 1= =1 —45)]. (24

Expression (24) defines the contact stress distribution in a simply supported orthotropic
beam in terms of a single nondimensional parameter ff, and it is plotted in Fig. 3 for
0 < ff < 1. The curve for f# = 0 represents the half-plane solution. It should be mentioned
that the above solution assumes that no scparation occurs between the indenter and the
beam. In fact, separation oceurs at f§ = 1. It is interesting to see that the value of g at
X = 0.5is u constant, \/ 3/2, for all beams. This can be observed in ull the previous numerical
results, for example Keer and Ballarini (1983), Keer and Miller (1983), Keer and Schonberg
(1986), Sankar and Sua (1983) and Sankar (19874, b), until the indenter separutes from the
beum.

Contact force-contact length relation
We define a nondimensional contact force £ = (4PR)Y/(nD,h1%). From egns (19) and
(23) the load~contact length relation takes the form

P =1 +202585 —52.58¢ = 229.68758°¢%). (25)

For a half plane, the above relation takes the simple form £ = ¢* The variation of P with
& is plotted in Fig. 4 for various values of the beam parameter B. The curve for 8=0
corresponds to the half-plane solution. The effect of B is to increase the contact length for
a given contact force. In Sankar (1987b) the effect of beam curvature was taken into
account by considering the problem as that of contact between two curved bodics. Such an
assumption will result in a £-¢ relation of the form

P = &L+ 2483, (26)

which is a reasonable approximation of eqn (25} for small ¢,
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Fig. 4. Contact force-contact length relation in simply supported beams,

3. INDENTATION OF AN ORTHOTROPIC CANTILEVER BEAM

In this section we consider the case of a cantilever beam, as shown in Fig. 5. The
indenter location is given by x,. Initial contact will be a line contact at x = x;. As the load
is applicd, ¢ will increase, and the center of contact defined by x, will move towards the
fixed end of the beam. Thus an additional unknown x, ts introduced. However, the contact
stresses will be unsymmetric about the center of contact length, und so we have one more
cquation which states that the contact stresses vanish at the left end of the contact region
too.

There is another important difference between symmetric and nonsymmetric cases.
The solution for p-displacements in the hall-plane contains arbitrary terms for translation
and rotation, which means that the expression for the boundary slope of the half-plane will
contain an arbitrary constant. In the case of symmetric contact, the rotation term can be
assumed to be zero. In the case of the cantilever beam problem, this difficulty can be
overcome by subtracting g (0, &) from ¢y (v, &) in the integral equation (3). This means that
we are measuring the boundary slope relative to the slope at x = 0. Thus eqn (3) will
become

b f PG5, ) =gh(0.9) +4(x. O] dE = — (v~ x)/R. &)

Xy

\ "/
P4

&

2c

y.2

Fig. 5. Indentation of an orthotropic cantilever beam.
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Fig. 6. Exact and approximate slopes of cantilever beams.

The second term in the above integral is the boundary slope of the half-plane at x = 0 due
to the applied load P, which we shall denote by 6, i.e.

b f 940, p(&) dE = Oy,

Although eqn (27) can be solved using the procedure described in section 2, we will simplify
the derivations by approximating 6y, as the slope due to a concentrated force P at x = x..
From eqn (4). Oy = 2P/nbD,)(1/x.). Substituting for P from eqn (23), we obtain
0o = (2Uc/Rx.)q,.

For a cantilever becam, the slope is given by

2 _ £\
Go(x,. &) = (121D bh") { - (fw§> }+ §6(x.0), (28)

where ¢(x, &) is defined in eqn (6). As before, we will approximate the Green’s function by
a single function as

gu(x.8) = (1’[32D,\bh*) [ (.§), (29)

where

S(%,8) = 3843+ %)~ 4P (- O  + he(F -+ (- O’

=(x-x)/e, {=(-x)e. %i=x/l, and % =x]I.

Comparison of the exact (eqn (28)) and approximate (eqn (29)) beam slopes is shown in
Fig. 6 for various values of £.

The contact stresses are assumed to be of the form given by eqn (12). The integral
equation {27) takes the form

+ |
J [;@2‘_‘;‘)‘ + ;? 7ACH E)]ﬁ(f) d&—(2¢/%.) gy = % — .~ . 30)

-1

The solution procedure is similar to that explained in section 2 and so is not repeated here.
By equating the coefficients of £°, ..., %’ on both sides of eqn (30), we obtain four equations
(31)~(34) in the unknown gs. The remaining two equations (35) and (36) are obtained from
thefact thatp=0atf= —land ¥ = + 1.

[B&(192%] +488%) — (28/%.)1q0 + [2+ B (1928, — 7.5 52.5¢%)] ¢,
+24B&%q,+(—2—-17.5B¢") g, = %, —x. (31)



Smooth indentation of orthotropic beams 335

fﬁ‘s T 3 3 ¥¥;I¥i 1 * ¥ r¥¥§f{ E 3 t i1
Bx1t Ba0
Bx10
102
<«
m
202
o
b4
o
< 10t
< 10
z
o]
o
10?

10°% besosed kS 2 2 221 X b 1 trpr} L bt 2 1110
10? 10 10" 1o
CONTACT LENGTH, ot

Fig. 7. Contact force—contact length relation in cantilever beams.

BE(15+2108%) g, +96B3'q, + (4 + 10588 ) q, — 8¢, = —¢ (32)
~96B&q,—21088%q, +8¢; =0 (33)

140B8* g+ 16g, = 0 (34
go+qi+q1+qs+qs=0 (35)
Go—qi+q:—qs+4. = 0. (36)

Equations (33)-(36) can be used to solve for ¢y,....q, in terms of g,. The results are:
g = (=128 qo/(1+3B), q2 = (=1 +P)qu ¢y = —qr, and gy = — By,

Contact force—contact length relation
Substituting for g,, ..., ¢, in terms of ¢, in eqn {32), one can obtain a relation between
¢, and £. In terms of the nondimensional contact force £, the P-¢ relation takes the form

~ 2288256
- 2 - A2 R, ¥ -
Pe=¢ /{l 3.75B¢* — 68+ a53p) 3B } (37)

The P- relations for various values of B are plotted in Fig. 7. B = 0 corresponds to the
half-plane. It is interesting to note that unlike the simply supported beam, as the contact
length increases, the load required for a given contact length is more than that in the
half-plane, This is because of the convex shape of the deformed beam. However, the
beam curvature effect is not as pronounced as in the case of a simply supported beam
{sec Fig. 4).

Contact stresses
Substituting for ¢,.....q in terms of ¢, in eqn (12), the nondimensional contact
stresses can be written as
2483 %
b= -2 =Bl —~42%) — T |,
P [ (1 —45%) i+3fi} (38)

The contact stress distribution is unsymmetric about the contact center. A sample contact
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Fig. 8. Contact stresses in cantilever beams.

stress distribution is shown in Fig. 8. In using eqns (37) and (38). care should be taken that
the left end of the contact region is not very close to the fixed end of the beam.

Contact center

An cquation for ¥, can be obtained by eliminating ¢, from egns (31) and (32). This
will yield a nonlincar algebraic equation in X, which can be solved by a simple iterative
procedure. T will be obtained as a function of ¢, which in turn can be expressed in terms
of P using cqn (37). B and £, will be the other parameters in the expression for 1. The solid
lines in Fig. 9 depict the variation of £, with P for different values of B. The value of I, is
assumed to be equal to 0.8,

A simple method of determining £, is deeribed as follows. Assuming that the tangent
to the indenter at the contact point will have the same slope as the beam at that point, we
obtain the relation

X, — X, 6F
R T Db

which yields a quadratic equation in x.. The solution for x, can be expressed in terms of
the nondimensional parameters defined carlier:

1 00 LER AR kRS v TTmg AR SR LB AR ALLLL LR R RALLL T 117
i 8=0
u Bax1-
=
d = P
»
€ | N
E 8310
]
(S - p
- [ ]
2 B = 1000
= B x 100
Z r %/t s 08 = .
© Equation {31)
e Equation (39)
‘u-‘ 1 lllll“l [} Illlllll L llllllll 1. llllllll L llllllll 111 1L
107 10-¢ 10°3 104 10°3 10-2 10!

CONTACT FORCE, p

Fig. 9. Location of contact center in cantilever beams.
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£ = (=14+/1+192PB%)/(36PB). (39

In Fig. 9, solid circles represent the relation between P and X, obtained from eqn (39). It
may be seen that eqn (39) provides a simple method of finding <, for a given contact force.

4. SUMMARY

The approximate Green's function method described in this paper provides a closed
form solution for the problem of contact between a rigid indenter and an orthotropic beam.
The dimensionless beam parameter B and the contact parameter § seem to reflect the effects
of beam dimensions, degree of orthotropy of the beam material and contact length to beam
tength ratio on the contact behavior of the beam. Equations (24) and (25) describe the
contact behavior of a simply supported orthotropic beam. In the case of cantilever beams,
eqn (39) provides a simple expression for determining the contact center, and eqas (37) and
(38) can be used to determine the contact length and the contact stresses. Extension of the
present method to other types of beam support is straightforward.
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